翻訳と辞書
Words near each other
・ Novigrad, Istria County
・ Novigrad, Zadar County
・ Novik
・ Novik, Iran
・ Novik-class frigate
・ Novika
・ Noviken VLF Transmitter
・ Novikov
・ Novikov conjecture
・ Novikov ring
・ Novikov self-consistency principle
・ Novikov's compact leaf theorem
・ Novikov's condition
・ Novikovo
・ Novikov–Shubin invariant
Novikov–Veselov equation
・ Novillard
・ Novillars
・ Novillas
・ Noville
・ Noville Peninsula
・ Noville, Switzerland
・ Novillero
・ Novillers
・ Novillidius
・ Novim
・ Novimus Nos
・ Novin
・ Novin Keshavarz Tehran VC
・ Novinar


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Novikov–Veselov equation : ウィキペディア英語版
Novikov–Veselov equation
In mathematics, the Novikov–Veselov equation (or Veselov–Novikov equation) is a natural (2+1)-dimensional analogue of the Korteweg–de Vries (KdV) equation. Unlike another (2+1)-dimensional analogue of KdV, the Kadomtsev–Petviashvili equation, it is integrable via the inverse scattering transform for the 2-dimensional stationary Schrödinger equation. Similarly, the Korteweg–de Vries equation is integrable via the inverse scattering transform for the 1-dimensional Schrödinger equation. The equation is named after S.P. Novikov and A.P. Veselov who published it in .
==Definition==
The Novikov–Veselov equation is most commonly written as
where v = v( x_1, x_2, t ), w = w( x_1, x_2, t ) and the following standard notation of complex analysis is used: \Re is the real part,
:
\partial_ = \frac ( \partial_ - i \partial_ ), \quad
\partial_ = \frac ( \partial_ + i \partial_ ).

The function v is generally considered to be real-valued. The function w is an auxiliary function defined via v up to a holomorphic summand, E is a real parameter corresponding to the energy level of the related 2-dimensional Schrödinger equation
:
L \psi = E \psi, \quad L = - \Delta + v( x, t ), \quad \Delta = \partial_^2 + \partial_^2.


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Novikov–Veselov equation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.